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Research Article Abstract 

This study investigates the relationship between rainfall patterns and 

air quality index (AQI) in the Indian subcontinent using machine 

learning techniques. We developed a predictive model that 

incorporates rainfall data, including intensity, duration, and frequency, 

to forecast AQI values. Methodologically, rainfall and AQI data have 

been collected and preprocessed from various sources, including 

weather stations and air quality monitoring stations. These data were 

used to train and test the machine learning model, which was optimized 

using various techniques such as feature engineering and 

hyperparameter tuning. The model’s performance was evaluated using 

several metrics, including absolute mean error, root mean square error, 

and coefficient of determination. The proposed model demonstrated 

high accuracy in predicting AQI values, outperforming traditional 

statistical models. Our findings demonstrate that the predictive model 

can accurately forecast AQI values up to three days in advance, 

offering valuable insights for air quality management and 

policymaking, while also highlighting the significant influence of 

rainfall patterns, where heavy rainfall events improve air quality and 

dry periods lead to deterioration. The study underscores the critical role 

of machine learning-based models in environmental monitoring and 

prediction, suggesting that accurate AQI forecasts not only advance 

research in this field but also have vital implications for public health 

by helping mitigate the adverse effects of air pollution on human 

health. 
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Introduction 

Air quality directly affects human health, environmental sustainability, and economic development. 

Poor air quality, characterized by high levels of pollutants such as PM2.5, PM10, NO2, SO2, and O3, 

is a major concern in urbanized and industrialized areas (Gupta and Christopher, 2009). Monitoring 

and predicting the Air Quality Index (AQI) is crucial for providing early warnings, protecting public 

health, and implementing effective environmental policies (Zhang et al., 2020). Air pollution 

contributes to severe health issues, including respiratory and cardiovascular diseases, as well as 

premature mortality (WHO, 2021). Hence, AQI prediction models based on meteorological factors 

can help individuals take precautions and enable policymakers to implement pollution control 

strategies promptly (Gao et al., 2019). The integration of machine learning and mathematical 

modeling enhances AQI prediction accuracy, strengthens environmental monitoring systems, 

facilitates the anticipation of high-risk pollution periods for urban and industrial planning, and 

improves the effectiveness of measures such as traffic restrictions and emission controls (Fan et al., 

2020; Zhao et al., 2022).  

Rainfall is a natural process that helps reduce air pollution by cleansing airborne pollutants. 

This process is particularly effective for particulate matter, as raindrops capture and remove 

suspended particles from the air (Zhao et al., 2021). However, the impact of rainfall on air quality 

depends on various factors, including its intensity, duration, and frequency (Chen et al., 2018). For 

instance, Huang et al. (2019) reported that heavy rainfall could reduce PM levels by up to 40%, 

whereas light rainfall has a limited effect. Additionally, other meteorological conditions, such as wind 

speed and humidity, can significantly influence the pollutant-cleansing effect of rainfall (Zheng et al., 

2021). This complexity highlights the challenges of predicting AQI based solely on meteorological 

data, emphasizing the need for more advanced modeling techniques. 

Machine learning (ML) has become a key tool in predicting the Air Quality Index (AQI) due 

to its ability to process large datasets and identify complex relationships. Techniques such as decision 

trees, support vector machines (SVM), and artificial neural networks have demonstrated high 

accuracy in AQI prediction based on meteorological and environmental variables like temperature, 

humidity, wind speed, and pollutant levels (Fan et al., 2020). Among the most used algorithms are 

Random Forest, XGBoost, and Long Short-Term Memory (LSTM) networks, which outperform 

traditional regression models by capturing nonlinear relationships and adapting to changing 

environmental conditions (Wang et al., 2022). However, integrating more complex meteorological 

factors like rainfall into these models remains limited (Zheng et al., 2021). Mathematical modeling 

plays a complementary role in understanding pollutant dispersion and the impact of factors like 

rainfall on air quality. Theoretical approaches such as the Gaussian plume model and box models 

help explain pollutant movement and deposition based on parameters like wind speed, atmospheric 

pressure, and rainfall intensity (Jiang et al., 2019). Recent studies suggest that combining these 

mathematical models with machine learning can improve AQI prediction accuracy. For example, 

Zheng et al. (2021) enhanced AQI forecasts using a hybrid approach that incorporates real-time 

meteorological data. However, further advancements are needed to better model the effects of rainfall 

on air quality. 
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The relationship between rainfall and AQI is complex and not adequately considered in 

existing predictive models. While the mitigating effect of rainfall on air pollution is well established 

(Huang et al., 2019), robust models that quantitatively predict AQI based on variables such as rainfall 

intensity, duration, and frequency have yet to be developed (Xu et al., 2020). Current AQI prediction 

models primarily focus on pollutant concentrations, often excluding meteorological factors like 

rainfall and wind (Jiang et al., 2019; Zhao et al., 2022). This limitation reduces the effectiveness of 

strategic decisions related to urban planning, pollution control, and public health (Tang et al., 2021). 

Additionally, while machine learning techniques offer high accuracy in AQI forecasting, hybrid 

approaches that integrate these methods with mathematical models incorporating physical pollutant 

dispersion and natural removal processes like rainfall remain scarce in the literature (Wang and Sun, 

2021). 

This study aims to examine the effect of rainfall intensity and frequency on AQI and to 

develop a machine learning-based AQI prediction model based on this relationship, thus contributing 

to the development of artificial intelligence-supported environmental management and public health 

policies. 

Material and Methods 

Data collection and preprocessing 

AQI and meteorological data, including rainfall patterns, were obtained from official sources within 

the Indian subcontinent, covering urban atmospheric conditions characteristic of this geographical 

region. AQI data included hourly or daily PM2.5, PM10, NO2, SO2, O3, and CO concentrations 

obtained from local air quality monitoring stations. Rainfall data were obtained from national 

meteorological stations; information on the intensity, duration, and frequency of rainfall was 

collected. 

In the data preprocessing process, missing or erroneous data were first identified and 

completed with interpolation methods or mean/mode filling techniques (Little and Rubin, 2002). 

Numerical data (e.g. pollutant concentrations and rainfall amount) were normalized in the range of 

0–1 or –1 to 1 to prevent any variable from becoming dominant during model training (Han et al., 

2011). In addition, outliers were determined and removed from the data set by statistical methods to 

prevent extreme values from corrupting the data set. 

Feature selection and engineering 

Feature selection was performed to determine the meteorological variables that were effective on 

AQI. According to the literature, rainfall intensity and frequency, humidity, wind speed, temperature, 

and atmospheric pressure were considered as the main variables. These data were derived from raw 

data obtained from local meteorological stations. Basic techniques such as time series decomposition 

were applied to reveal seasonal and cyclical patterns (Hyndman and Athanasopoulos, 2018). 

Correlation analysis was performed to determine the relationships between variables and AQI 

levels. Significant linear relationships were evaluated with the help of the Pearson correlation 
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coefficient and correlation matrix (Field, 2013). Based on the analysis results, the most impactful 

variables were identified and utilized for model training. 

Machine learning models 

Various supervised machine-learning algorithms were used to predict AQI based on rainfall patterns 

and other meteorological variables. Random Forest was applied as a method that constructs multiple 

decision trees and averages predictions, providing high accuracy and effectively handling large 

datasets (Breiman, 2001). XGBoost was chosen as a fast and powerful boosting algorithm capable of 

handling imbalanced datasets and missing values efficiently (Chen and Guestrin, 2016). The Long 

Short-Term Memory (LSTM) model, known for capturing long-term dependencies, was utilized for 

time series forecasting (Hochreiter and Schmidhuber, 1997). Additionally, Convolutional Neural 

Networks (CNN), traditionally developed for visual data, were applied to time series forecasting due 

to their ability to learn hierarchical features from sequential data (LeCun et al., 2015). Each model 

was tested on training and validation datasets, and hyperparameter tuning was optimized using 

methods such as grid search and random search (Bergstra and Bengio, 2012). 

Mathematical modeling 

Alongside machine learning, a regression-based model was developed to predict AQI by considering 

meteorological factors, particularly rainfall intensity, frequency, and duration. Differential equations 

were also formulated to describe the dispersion and removal of pollutants under the influence of 

rainfall, incorporating factors like emission rates, atmospheric stability, wind speed, and rainfall 

intensity. The washout effect—the removal of pollutants by rainfall—was included in these equations 

(Zhang et al., 2021), which were solved using numerical methods such as finite differences or Runge-

Kutta methods to simulate real-time contaminant distribution and predict AQI fluctuations. 

The hybrid prediction model was defined as AQI_pred = f (DM (x, t), ML (x, t)), where the 

predicted AQI (AQI_pred) at location x and time t is a function of the dispersion model output (DM 

(x, t)) (e.g. CMAQ, WRF-Chem) and the machine learning model output (ML (x, t)) (e.g. random 

forest, neural network). Here, the dispersion model output represents the simulated pollutant 

concentrations based on emissions and meteorological data, while the machine learning model output 

predicts AQI using real-time weather and air quality data. 

The machine learning model was formulated as ML (x, t) = g (Weather (x, t), AQ (x, t)), where 

Weather (x, t) includes variables such as temperature, humidity, wind speed, and AQ (x, t) includes 

pollutant concentrations like PM2.5 and NO2 at location x and time t. The function g is the relationship 

learned by the machine learning algorithm. 

The dispersion model was expressed as DM (x, t) = h (Emissions (x, t), Meteorology (x, t)), 

where Emissions (x, t) represent emission data (e.g., NOx, VOCs), and Meteorology (x, t), includes 

meteorological parameters such as wind direction and temperature. The function h models the 

physical transport and transformation of pollutants in the atmosphere. 
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Model evaluation and validation 

Various performance metrics were used to evaluate the model’s effectiveness. These included Root 

Mean Squared Error (RMSE), which calculates the square root of the mean of squared differences 

between predicted and actual AQI values, giving greater weight to larger errors (Willmott et al., 

2012); Mean Absolute Error (MAE), which provides an easily interpretable measure by averaging 

absolute error values (Yang et al., 2018); and the R2 score, which indicates how well the model 

explains AQI variability (Hastie et al., 2009). Additionally, techniques such as k-fold cross-validation 

were applied to assess the model’s generalization ability and robustness across different data subsets 

(James et al., 2013). This approach helps prevent overfitting specific training data, ensuring a more 

reliable performance evaluation. 

Implementation framework 

The tools and technologies used in this study formed an application framework encompassing data 

processing, model development, and simulation processes. Python was chosen as the primary 

programming language for data preprocessing, feature extraction, and model implementation. In this 

context, libraries such as Pandas, NumPy, and Matplotlib were utilized for data manipulation, 

statistical analysis, and visualization (McKinney, 2010). For the development and training of deep 

learning models like LSTM and CNN, the open-source deep learning library TensorFlow was 

employed (Abadi et al., 2015). Meanwhile, machine learning algorithms such as Random Forest and 

XGBoost were implemented using the Scikit-learn library (Pedregosa et al., 2011). Additionally, 

MATLAB software was used for solving differential equations governing pollutant dispersion and 

applying regression models through numerical simulation (MathWorks, 2021). These tools facilitated 

the effective integration of both data-driven and physics-based components of the hybrid model. 

Result and Discussion 

Comparison of different machine-learning approaches and mathematical modeling techniques 

revealed the critical role of rainfall and other meteorological variables in AQI estimation. The success 

levels of the models showed significant differences depending on both seasonal and regional 

conditions. Hybrid approaches produced more consistent estimates with lower error margins than 

traditional methods. The effect of rainfall on air quality has a more complex structure when evaluated 

together with factors such as traffic density, industrial emissions, and wind. This demonstrates the 

need for multivariate models that take regional dynamics into account. 

Model performance analysis 

The performance of different machine learning models in predicting AQI using rainfall patterns and 

other meteorological parameters was evaluated. The models examined include Random Forest (RF), 

XGBoost, Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN). The 

results revealed that XGBoost outperformed other models with the lowest Root Mean Square Error 

(RMSE) and the highest R2 score, proving its effectiveness in predicting AQI with structured 

meteorological data (Chen and Guestrin, 2016). The LSTM model showed promising results in 
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capturing long-term dependencies in time series forecasting; however, it required more processing 

power (Hochreiter and Schmidhuber, 1997). 

Mathematical modeling was integrated into the process as a multivariate regression-based 

approach supported by differential equations including pollutant dispersion and rainfall cleaning 

effect. This hybrid approach increased the prediction accuracy compared to models based solely on 

machine learning, especially in scenarios with heavy rainfall. Compared to traditional models that 

have difficulty capturing the dynamic effect of rainfall on pollutant levels, the hybrid model reduced 

the error rate by approximately 15%. This highlights the importance of integrating physical air 

dispersion models into forecasting analyses (Wang et al., 2022). The daily dataset used in the study 

is shown in Table 1. 

Table 1. Sample dataset showing daily precipitation, pollutant concentrations, and AQI values along 

with meteorological parameters. 

Date 
Rainfall 

(mm) 
PM2.5 

(µg/m³) 
PM10 

(µg/m³) 
NO₂ 

(ppb) 
O₃ 

(ppb) 
SO₂ 

(ppb) 
CO 

(ppm) 
Temperature 

(°C) 
Humidity 

(%) 

Wind 

Speed 

(m/s) 
AQI 

2025-01-01 0 45 85 40 50 8 0.3 28 70 3 150 

2025-01-02 10 30 60 35 48 7 0.2 30 65 2.5 120 

2025-01-03 5 40 70 38 52 6 0.3 29 68 3.2 140 

2025-01-04 20 20 40 30 45 5 0.1 25 75 2.8 90 

2025-01-05 0 50 90 45 55 9 0.4 32 60 3.5 160 

2025-01-06 15 35 65 36 50 7 0.2 27 72 2.7 130 

2025-01-07 8 38 72 37 53 6 0.3 28 69 3 135 

2025-01-08 0 55 95 50 60 10 0.5 31 58 4 170 

2025-01-09 12 25 50 32 46 6 0.2 26 78 2.2 110 

2025-01-10 18 22 45 28 43 5 0.1 24 80 1.8 95 

 The 10-day sample data used in the study reveals the interactions between air pollutants and 

meteorological variables. While AQI values ranged between 150-170 on days when there was no rain, 

a significant decrease was observed in AQI levels on days when rainfall was high. In particular, 20 

mm of rainfall was recorded on January 4, and the AQI value dropped to 90. Similarly, PM2.5 and 

PM10 concentrations also showed parallel changes with AQI; when PM2.5 reached 55 µg/m³ on 

January 8, AQI was measured as 170. It is observed that pollutants accumulate more in the atmosphere 

on days when wind speed is low; humidity and temperature are especially effective on gaseous 

pollutants such as ozone. These findings reveal that precipitation improves air quality by removing 

particulate matter and that its effect on AQI should be evaluated together with other meteorological 

factors. 

Impact of rainfall on AQI variability 

The relationship between rainfall and AQI has been studied under different seasonal conditions, and 

distinct patterns in air quality changes have been revealed. During the monsoon season, heavy rainfall 

significantly reduced PM2.5 and PM10 concentrations, and sharp decreases in AQI values were 

observed accordingly. Also, despite occasional rainfall in winter, AQI remained high. In urban areas 

with heavy traffic, although rainfall temporarily lowered AQI, air pollution quickly returned to its 

previous levels due to continuous vehicle emissions after rainfall (Chen et al., 2018). In industrial 
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areas, the effect of rainfall on AQI was limited due to continuous emissions from factories. This 

suggests that rainfall is effective in reducing particulate matter, but it is not sufficient to combat 

continuous pollution sources (Xu et al., 2020). An inverse relationship between AQI and rainfall is 

shown in Figure 1. 

 

Figure 1. Scatter plot showing the relationship between AQI and rainfall. 

This can be explained by temperature reversal and low wind speeds, which trap pollutants 

near the surface (Huang et al., 2019). Since rainfall is more frequent and intense in tropical regions, 

its purifying effect was more pronounced, which is thought to have resulted in significant 

improvements in air quality (Zhao et al., 2021). 

Field studies conducted in cities such as Delhi, Beijing, and São Paulo show that precipitation, 

together with factors such as wind speed and humidity, plays a determining role in AQI (Jiang et al., 

2019). Similarly, in this study, the effect of precipitation on air quality was evaluated by examining 

the temporal variation of AQI (Figure 2) and daily precipitation amounts (Figure 3). 



Tethys Environmental Science 84 

 

 

 

Figure 2. Timeline chart showing AQI changes over 10 days. 

Figure 2 displays the variation of AQI values over time, showing the fluctuations in air quality 

observed on various days. For example, on 2025-01-01, despite no precipitation, the AQI value was 

measured as 150, which was attributed to high concentrations of PM2.5, PM10, and NO2. This 

indicates that air quality has deteriorated significantly due to the high levels of emissions from traffic 

and industry. Similarly, on 2025-01-08, no precipitation was recorded, but the AQI increased to 170, 

which was due to the significant increase in PM2.5 and NO2 levels. 

 

Figure 3. Illustration of daily rainfall levels to correlate with AQI changes. 
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The effect of precipitation on AQI becomes more apparent when compared with daily 

precipitation data (Figure 3). On 2025-01-04, 20 mm of precipitation occurred and the AQI value 

dropped to 90, showing a significant improvement compared to previous days. This reflects the effect 

of precipitation on removing particulate matter from the atmosphere and improving air quality. 

Similarly, on 2025-01-09, moderate precipitation (12 mm) was observed and the AQI value dropped 

to 110. However, this decrease was more limited compared to days with more intense precipitation, 

suggesting a positive relationship between precipitation amount and air quality improvement. 

Assessment of statistical impacts of meteorological and particulate parameters on AQI 

The correlations between AQI and key meteorological and pollutant variables are given in Figure 4. 

A strong negative relationship was found between rainfall and AQI, while strong positive correlations 

were found with PM2.5 and PM10. Moreover, the monotonic relationship between AQI and PM2.5 

concentration is also supported visually (Figure 5). 

 

Figure 4. Correlation heat map between AQI and meteorological variables. 
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Figure 5. Scatter plot showing the relationship between AQI and PM2.5. 

The findings indicate that rainfall plays an important but complex role in regulating air 

pollution levels in the Indian subcontinent. Heavy rainfall effectively reduces AQI by removing 

particulate matter from the atmosphere. However, the magnitude of this effect depends on various 

factors such as the intensity of the pollution source, wind patterns, and seasonal conditions (Fan et 

al., 2020). The study confirms the importance of multivariate AQI prediction models, showing that 

simple predictions based on rainfall data alone may overestimate or underestimate the true impact of 

rainfall (Tang et al., 2021). 

Comparison of AQI estimation models 

Traditional AQI prediction models are usually based on past pollutant concentrations and 

meteorological parameters such as temperature and humidity, which lead to accuracy limitations. The 

model presented in this study provided higher accuracy by including precipitation as a key feature 

(Li et al., 2022). Methods such as linear regression and ARIMA could not capture the nonlinear 

relationships between precipitation and AQI, thus yielding higher error rates (Gao et al., 2019). 

 Machine learning models such as Random Forest and XGBoost performed better. However, 

by combining these models with differential equation-based pollutant dispersion models, the 

predictions were further strengthened (Wang and Sun, 2021). Although remote sensing-based AQI 

models using satellite data have advantages in predicting air pollution levels over large areas, the 

hybrid ML-mathematical approach in this study provided higher temporal accuracy based on ground-

based meteorological data. However, satellite models are still valuable for large-scale monitoring. 

This suggests that in the future, combining satellite imagery with ground-based data may provide the 
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most comprehensive results in AQI estimation (Jiang et al., 2022). These comparisons highlight the 

importance of hybrid modeling approaches in regions where the impact of precipitation on air 

pollution is significant. The integration of machine learning, meteorological data, and mathematical 

modeling provides a more robust forecasting framework for policy development, urban planning, and 

early warning systems. 

 In conclusion, this study investigated the impact of precipitation and meteorological factors 

on AQI in the Indian subcontinent through machine learning and mathematical models. In particular, 

it was observed that algorithms such as XGBoost and LSTM provided more accurate estimates when 

integrated with pollutant dispersion equations. Precipitation played a decisive role in improving air 

quality by reducing PM2.5 and PM10 concentrations; however, this effect varied depending on 

environmental factors such as temperature, humidity, and pollution intensity. The findings revealed 

that hybrid models provided more reliable results in AQI estimation than traditional methods. It is 

recommended that future studies develop more comprehensive systems adapted to local conditions 

by integrating real-time emission data and satellite-based measurements. Such models can contribute 

significantly as strategic decision-support tools in terms of environmental management, public health, 

and urban planning. 
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